Complex Gaussian quadrature for oscillatory integral transforms

نویسندگان

  • Andreas Asheim
  • Daan Huybrechs
چکیده

The classical theory of Gaussian quadrature assumes a positive weight function. We will show that in some cases Gaussian rules can be constructed with respect to an oscillatory weight, yielding methods with complex quadrature nodes and positive weights. These rules are well suited for highly oscillatory integrals because they attain optimal asymptotic order. We show that for the Fourier oscillator this approach yields the numerical method of steepest descent, a method with optimal asymptotic order that has previously been proposed for this class of integrals. However, the approach readily extends to more general kernels, such as Bessel functions that appear as the kernel of the Hankel transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrature methods for highly oscillatory singular integrals

We study asymptotic expansions, Filon-type methods and complex-valued Gaussian quadrature for highly oscillatory integrals with power-law and logarithmic singularities. We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand, the stationary points and the endpoints of the integral. A truncated asymptotic expansion...

متن کامل

Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature

In this paper we study the asymptotic behavior of a family of polynomials which are orthogonal with respect to an exponential weight on certain contours of the complex plane. The zeros of these polynomials are the nodes for complex Gaussian quadrature of an oscillatory integral on the real axis with a high order stationary point, and their limit distribution is also analyzed. We show that the z...

متن کامل

Quadrature formulas for integrals transforms generated by orthogonal polynomials

By using the three-term recurrence equation satisfied by a family of orthogonal polynomials, the Christoffel-Darboux-type bilinear generating function and their asymptotic expressions, we obtain quadrature formulas for integral transforms generated by the classical orthogonal polynomials. These integral transforms, related to the so-called Poisson integrals, correspond to a modified Fourier Tra...

متن کامل

Efficient quadrature rules for a class of cordial Volterra integral equations: A comparative study

‎A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations‎. ‎The equations of this class appear in heat conduction problems with mixed boundary conditions‎. ‎The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes‎. ‎A comparative stud...

متن کامل

Computing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures

An account on computation of integrals of highly oscillatory functions based on the so-called complex integration methods is presented. Beside the basic idea of this approach some applications in computation of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified Hermite weight are considered, including some numerical examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011